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Summary

Recent work {(publications and draft papers on www.aquarien.com)
in numerical methods for modeling the vertical unsaturated flow
of water in porous media has uncovered previously unrecognized
errors in standard methods. These errors may affect the validity
and reliability of models that attempt to predict the flow of
water and the transport of hazardous and nuclear waste on the
scale of tens to thousands of years. The following questions and
three-point grid test demonstrate how the commen arithmetic mean
of intergrid unsaturated hydraulic conductivity violates Darcy's
law for vertical unsaturated flow in all but a few trivial
conditions, and can even violate the mathematical minimum-maximum
principle for elliptic boundary value problems (steady-state flow
problems). By contrxast, a Darcian intergrid conductivity mean
for the exponential pressure-conductivity relation solves auch
problems perfectly. The numerical examples in the appendix
compare parallel models of a relaxing wet pulse in a long,
vertical fracture, using the exponential pressure-conductivity
relation. OCne model uses the arithmetic mean, and the other the
analytic Darcian mean, with exactly the same adaptive time steps
for both. The arithmetic mean model exhibits a dry spike that
grows with the logarithm of time, and oscillations similar to
numerical dispersion, both associated with space steps where the
arithmetic mean can viclate the min-max principle. By contrast,
the Darc¢ian mean model is smooth and well-behaved.
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Summary

Recent work (publications and draft papers on www.aquarien.com) in numerical methods for
modeling the vertical unsanirated flow of water in porous media has uncovered previously
unrecognized errors in standard methods. These errors may affect the validity and reliability of
models that atternpt to predict the flow of water and the transport of hazardous and nuciear waste
on the scale of tens to thousands of years. The following questions and three-point grid test
demonstrate how the common arithmetic mean of intergrid unsaturated hydraulic conductivity
violates Darcy's law for vertical unsaturated flow in all but a few trivial conditions, and can even
violate the mathematical minimum-maximum principle for elliptic boundary value problems
(steady-state flow problems). By contrast, a Darcian intergrid conductivity mean for the
exponential pressure-conductivity relation solves such problems perfectly. The numerical
examples in the appendix compare parallel models of a relaxing wet pulse in a long, vertical
fracture, using the exponential pressure-conductivity relation. One model uses the arithmetic
mean, and the other the analytic Darcian mean, with exactly the same adaptive time steps for
both. The arithmetic mean model exhibits a dry spike that grows with the logarithm of time, and
oscillations similar to numerical dispersion, both associated with space steps where the arithmetic
mean can violate the min-max principle. By contrast, the Darcian mean model is smooth and
well-behaved.
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Some Questions on Model Validity

Would you agree that it is necessary for a modeler of unsajurated flow to be cognizant of all
the sources and relative magnitudes of error in his or her numerical calculations? Would you
agree that this allows a modeler to construct a variable or adaptive grid so as to produce the least
error? [f not, make an irrefutable scientific argument for the contrary view.

Would you agree that any method of calculating steady-state unsaturated flow would be both
physically and mathematically invalid if it violated either the minimum-maximum principle for
elliptic boundary value problems (D.W. Zachmann & P. DuChateau, 1986, Schaum's QOutline
Series, Theory and Problems of Partial Differential Equations, pp 19-21) or Darcy's law? If not,
can you give a scientific justification for your answer that is beyond all refutation?

Would you contend that any such method that commits either of these violations in a model of
steady-state flow is then valid to use in a model of transient flow? If so, can you give a scientific
justification for your answer that is beyond all refutation?

Would you agree that any method that cormmits one or both of these violations would be
inappropriate to use in models designed to predict and assure the safety of a nuclear waste site
over the scale of thousands of years? If not, can you give a scientific justification for your answer
that is beyond refutation?

Can you demonstrate that all the methods that you use for calculating unsaturated flow in your
models do not violate either the min-max principle or Darcy’s law in any case or regime in which
your models are used? If not, can you give a scientific justification that is beyond all refutation
for why your models should be considered to be valid and reliable?

Do you recognize equation [1] as Darcy's law in the finite form and [2] as Darcy's law in the
continuum form?
— AH Ax—Ay -
[1]1g=-Ks Kv- ?A;c— =—Ks-Kv —E—w , where g-bar (mv's) is the mean mass tlow across
the vertical distance, Ax (m)}, Ks {nv/s} is saturated hydraulic conductivity, Kv is the mean relative
hydraulic conductivity across vertical Ax, and AH (m) ts the total hydraulic head difference across Ax,

where H = x-y, x (m) is the vertical position or head and y (m) is the matric suction (or negative
pressure) head.

dx—dy
ox

Consider the three-point system of steady-state, constant, vertical, unsaturated flow in a
homogeneous porous medium in Figure 1, with fixed boundary conditions y2(x2) and y0(x0),
where x0 = 0, x1 = Ax and x2 = 2-Ax in the vertical. Let Km be the estimate of unsaturated
hydraulic relative conductivity mean between x0 and x2, and kml and kmu be the estimates by
the same method between x0 and x1, and x1 and x2, respectively. Let HO, H1 and H2 be the total
heads at x0, x1 and x2, such that HO = -y0, H1 = Ax-y1 and H2 = 2-Ax-y2. Would you agree
that equation [3] is an accurate and valid application of Darcy’s law in {1] in this case?

dH
[2] ¢ =—-K(y)- o -K(y)-
X

z
4
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[]
13 22 24 28 28 3 32
(XO’{]’O) Matric Suclion {m)

Figure I Three-Point System of Steady-State Flow

131 %=Km-(H2—HO)/2=ian1-(H1—H0)=k1ﬂu-(H2—H1)

If one solves the two right-hand-sides of {3] against Km-(H2-HO) for H1, sets them equal and
divides out common terms of (H2-HO0), the result is then equation [4]. Would you agree that in
order to satisfy Darcy's law and calculate the same constant flow on both the Ax and 2-Ax scales,
that any method to estimate the intergrid conductivity means, Km, kml and kmu, would also have
to satisfy equation {4]? And would you agree that if it failed to satisfy equation [4] that this
would raise a legitimate question as to its validity in a model of unsaturated flow? If not, please
demonstrate mathematically why not.

2-kml - kanu
fonl + ko

Suppose that the method in question is the arithmetic mean, such that Km = (kr0+kr2)/2, kml =
(krO-+kr1 )2 and kmu = (krl1+kr2)/2, where kr0 = kr(y0), krl = ke(y 1}, kr2 = kr(w2) and ke{y) is
the unsaturated relative conductivity relation for the porous medium in Figure 1. Substitute the
arithmetic means for kml and kmu into equation [3] and cancel common terms, like 2. Would
you agree that equation [5] is a valid result and the only unknown in the equation is y 1, which
can be solved be iteration or Newton's method? Equations [4] and [5] are both derived from
equation [3]. Would you agree that the value of krl = kr(\y1) resulting from [5] determines the
values of kml and kmu, and that substituting them back into equation [4] is a reasonable way to
check the mathematical and physical validity of the arithmetic mean, or any other method of
estimation?

(5] (r(y 1)+ kr2) - (H2 — Ax + 1) = (kr0 + k(1)) - (Ax — w1~ HO) =0

(4] Km=

Consider a porous medium where the unsaturated conductivity relation is determined by
equation [6], with 1} = 8.} and yd = 0.08 m. Given the expected values published in Schenker, et
al. (1993, Stochastic hydrogeological unites and hydrogeological properties development for
total-system performance assessments, Sandia Report SAND94-0244*UC-814 under DOE
contract DE-AC04-94A1.85000), is this a reasonable possible expression for the relative
conductivity of a fracture in Topopah Spring welded volcanic tff, if one uses a Mualem or
Burdine transformation to derive kr(y) from the pressure-saturation parameters given in
Schenker, et al? If not, can you specify a more correct set of 1 and yd parameters to use in this

example? ’2/
b

© D.L. Baker 1999 - 3



EIS000029

1 W < ud
[6]kr(¥f)={ , e
(yd /y)" oy >yd

fitting parameter.

, where yd = "displacement pressure" head (m)yand 1y is a

Please verify that Table | is the set of solutions to equation [5], given equation [6], with yd =
0.08 and n as given in column 2. Is it not apparent from this table that for n = 8.1 the arithmetic
mean produces a value of y1 that violates the min-max principle for any Ax greater than about
0.50366 m? It is possible to show that the arithmetic mean satisfies both equations [4] and [5] in
the trivial case of pure gravity flow, where w0 = w1 = y2. But is it not apparent from Table 1
that the arithmetic mean faiis satisfy Darcy's law in steady state flow for W0 # y2 and Ax >
0.50366 m? Is it not also apparent that the arithmetic mean likely violates the min-max principle
form =2.1 and 4 and for Ax > 0.80422 and 0.56667 m, respectively? If you do not agree, can
you demonstrate the opposite mathematically?

Table 1: Solutions to Figure 1 with the Arithmetic Mean
The variables 1, Ax, W0, yland w2 are as described above. The variable, w1, is determined by the solution
to equation [5], krl=kr(y1} = (0.08/y1)", kml = (krO+kr1)/2, kmu = (kr1+kr2)/2, Km = (ke0+kr2)2 and the
mean of means is 2-kml-kmuw/(kml+kmu), the right-hand-side of equation [4]. The W1 column tests
conformity to the min-max principle, that w1 is included in the range [w0,y2]. Rows & and 9 show
violation of the min-max principle. Rows 1,2 and 7 show the boundary of violation for the min-max
principle. The last two columns on the right test the balance of equation [4] for the arithmetic mean, which
fails in every row,

n Ax yo vl y2 krl kmi kmu Km mean of

{m) (m) (m) (m) . rllll;e:fn[sfil

1] 2.1 0.80422 | 0.5 l 1 004972 | 013142 | 004972 | 013142 | .007214
2| 40 | 056667 | 0.5 l 1 4.le-5 { .000348 4.1e-3 000348 | 7.33e-5
3| 81 0.001 0.5 | 0.58860 | I 9.54e-8 | 2.26e-7 4.83e-8 1.79e-7 7.97¢-8
4| 81 0.01 0.5 1059200 | 1 9.11e-8 | 2.2de-7 4.62c-8 1.79¢-7 7.66¢-8
5| 81 G.1 0.5 | 0.63450 | | 5.11e-8 | 2.05¢-7 2.66¢-7 1.79¢-7 4.71e-8
6| 8.1 0.5 0.5 1 09%34 [ 1 1.34e-9 | 1.79¢-7 1.32e-9 1.79e-7 2.63e-9
71 8.1 0.50366 | 0.5 l 1 1.3e-9 | 1.79e-7 1.3e-9 1.79e-7 2.59¢-9
8| 8.1 I 0.5 1.494 1 5.0e-11 | 1.79-7 6.8e-10 1.79e-7 1.35¢-9
9| 8.1 2 0.5 ] 2.4873 1 8.1e-13 | 1.79¢-7 6.5¢-10 [.79¢-7 1.3e-9

Consider again equations [4] and [5], which derive from Darey's law for steady-state flow that
is constant in space in equation [3]. Is it not apparent from these equations that a method of
estimating an intergrid hydraulic conductivity mean that upholds Darcy's law must contain an
accounting for the model vertical space step term, Ax?

It may be possible that the non-Darcian flow errors generated by the arithmetic mean are small
enough to make it of practical use in some modeling regimes. Can you provide a mathematical

'
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justification for when this would be the case? Can your justification account for both the
pressure-conductivity relation, kr(yr), and the model vertical space step size, Ax?

If you are using some other method of estimating the intergrid hydraulic conductivity mean in
your modeis, ¢an you perform this analysis and demonstrate that any other method you use does
not produce similar violations of Darcy's law and the min-max principle?

If not, would you agree that a method that did account for both kr(y) and Ax, and did not
violate either Darcy’s law or the min-max principle would be more appropriate for use in both
models of steady-state and transient flow?

Do you again recognize equation [2] as the continuum form of Darcy's law? Consider that if kr
is a function of y and v is a function of x, then kr is also a functicn of x. Do you recognize
equation [7] as the expression of flow that is constant in space, and equation [8] ([7] applied to
[2]) as the expression of steady-state flow that is constant in space and time, as long as the
boundary conditions are constant in time? If the conductivity relation and its inverse are as
described in {9], please verify that [9] and the spatial distribution of kr(x) in [10] satisfy [8].

d(q / Ks)

7] ————t=0
(7] .

2
8 i[’ff(w(x)) 2 (- w(x))} -5 '[l ) ay(x)} () S =0 where e
ox dx ox

dx ax®
boundary conditions are (x1=0,y1) lower and (x2=Ax,y2) upper and constant in time, which may also
be expressed as (0,krl=kr(y1)) and (Ax,kr2=kr(y2}).

(91 kr(x) = exp(- (yd -y (x))} , y(x) = yd — In(kr(x)) / 1
krl—kr2 b= kr2 — krl-exp(-n- Ax)
1-exp(-n-Ax) 1-exp(—1- Ax)

[10] ir{x)=a-exp(-1-x)+b ,a=

Equation [11] is [1] rewritten. Equation [12] is the integration of [2], allowing that kr(y(x))
can also be expressed as kr(x). Do you recognize [13] and its implication as a legitimate
definition of mean flow in a problem [8] where the flow is constant in time and space, and the
resulting value of Kv as the legitimate definition of a mean intergrid hydraulic conductivity in
that problem? Please verify that substituting [9] and [10] into the definition of Kv in [13]
produces the expression in [14].

(1) -7 Ax/ Ks = Kv - (Ax — Ay)

0 - qds = [ k- [ bryyay

R [ kr(xyde— | kr(y)dy :
[13]q——z-x-‘|.q = Kv= vy
u-(kr2 ~kri-e™)
[14] Kv = u="n-Ax

(1-e™)-(u=In(kr1/ kr2))

Since Kv is derived from the analytic solution to the steady-state problem in equation [8], it is
called a Darcian mean. Do you see that this approach depends intimately on the pressure-

e
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conductivity relation, kr(y), in [9]7 Please verify that as krl goes to kr2, Kv goes to Kv =kri =
kr2, that as Ax goes to zeto, Kv goes to (kr1-kr2)/In(kri/kr2) and that as Ax goes to +infinity, Kv
goes to kr2. Note that the first limit perfectly predicts that when 0 = y2 in the case of pure
gravity flow, that y0 =yl =y2,

Let Kv be expressed as a function Kv(kr1,kr2,Ax). Referring to the problem in Figure 1 and
equations [3] and [4], let Km = Kv(kr0,kr2,2-Ax), kmi = Kv(kr0,kr1,Ax) and kmu =
Kv(krl,kr2,Ax). The result, using the exponential conductivity relation in (9] is shown in Table 2.
{Note: The exponential conductivity relation in [9] is used here instead of the Brooks-Corey
relation in [6] because there is as yet no explicit analytic solution for Kv with [6]. But the results
of using the arithmetic mean with an exponential kr(y) are much the same character as in Table
1.} In every row of Table 2, the min-max principle is preserved and equation [4] is balanced. Is
it not apparent that the Darcian mean represents not just the estimate of the mean necessary to
solve the problem in Figure 1, given the conductivity relation in [9], but the true mean that
perfectly satisfies Darcy's law in this case?

Table 2: Solations to Figure 1 with a Darcian Mean
The variables 1, Ax, w0, wland y2 are as described above. The variable, y1, is determined by the solution
to equation [5), krl=kr(y1) = exp(n-(yd-y1)), kml = Kv(kr0 ksl Ax), kmu = Kv(kr] kr2,Ax), Km =
Kv(kr0,kr2,2-Ax) and the mean of means is 2-kml-kmu/(kmi+kmu}, the right-hand-side of equation [4].
The w1 column tests conformity to the min-max principle, that w1 is included in the range [WO0,y2]. The
last two columns on the right test the balance of equation [4]. In each case, the min-max principle and
Darcy's law are perfectly preserved.

T Ax w yl y2 krl kenl kmu Km mean of
means
(m} |(m)| (m) | (m) rhs of [4]

2.1 0.80422 [ 0.5 | 0.87887 1 0.1868 | 0.2259 0.1594 0.1964 0.1964

—

2| 40 | 056667 | 0.5 | 0.88249 | 1 0.0404 | 0.0722 0.02%6 0.0420 0.0420
3{ 81 0.001 0.5 [ 0.58392 | 1 0.0169 | 0.0242 0.0043 0.0080 0.0080
41 8.1 0.01 0.5 | 0.58836 l 0.0163 | 0.0237 0.0046 0.0077 0.0077
5{ 81 0.1 0.5 | 0.64069 | 1 0.0107 | 0.0184 0.0029 0.0050 0.0050
6| 81 0.5 0.5 | 0.91656 | 1 0.0011 | 0.0034 6.8e-4 0.0011 0.0011
7] 8.1 0.50366 { 0.5 | 0.91831 I 0.06011 | 0.0034 6.8e-4 0.0011 0.0011
8| 8.1 1 0.5 | 099790 | | 59e-4 | 0.0012 5.8¢-4 7.7e-4 7.7e-4
9| 81 2 0.5 | 0.999-- 1 5.8e-4 7.Te-4 5.8¢-4 6.6e-4 6.6e-4

If you do not agree, please offer the proof, consisting of a set of conditions and numerical
values for which Kv either violates the min-max principle or Darcy's law using [3] and [4]. Please
explain under what valid scientific principle the YMP modelers at the DOE Lawrence Berkeley
National Laboratory may claim that this approach to calculating intergrid hydraulic conductivity
means is not physically based and cannot be valid in the gravity flow case where W0 = w1 = y2.
Please extend that argument to explain why one cannot take any other conductivity relation, such
as [6], solve the elliptic boundary value problem [&] numerically, and thus obtain kr(x) and a
valid numerical value for Kv. Is it not apparent that this approach for develops Darcian means for

&

o
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steady-state flow? If you disagree, can you demonstrate that it will produce a worse answers in
numerical transient flow models than commonly-used means, such as the arithmetic mean, that do
not account for kr(y) or Ax, and occasionally violate the min-max principle?

In the finite method expression {13] of Richards' equation for unsaturated flow in a
homogeneocus medium, modelers sometimes make separate calculations for the intergrid
hydraulic conductivity means for gravity (advective), Kx, and capillary (diffusive) flow, Ky.
This may be justified by using [13], as in [16], redefining the integrals as the respective mean
conductivities, Kx and Ky, over Ax and Ay [17]. But notice that in general it is difficult, if not
impossible, to know the spatial distribution, kr(x), between grid points in a transient flow
problem. it is common to calculate the integral that defines Ky, but to substitute a much simpler
mean, such as the arithmetic mean, for Kx. Notice the effect that such a substitution in [16] has
on the mathematically equivalent [15], since Kv can now be defined as in [[8]. Near hydrostatic
conditions, Ax goes to Ay, and Kv in [18] suffers from division by zero, producing a singularity
with limits at Hinfinity, if Kx and Ky are not perfectly related through the derivations of Darcian
means presented here. Can you certify that you do not use any such method in your models? If
you do, can you provide mathematical proof that the errors generated by the singularity are not
significant in every case?

(151 /"' =@/ +r-[Kvm,l {H—H )—Kv,_, (H, - H,._,)] ¥ = Ks- At/ AX?

! T

[16]

N KxAx — Kyhy KxAx — KyAy
8" =8 +r'l: Ax—Ay (Ax—Ay) iz Ax — Ay Z(Ax_AW)ll—wz
i+1/2 i=1

=6 + Ax (mem _prl:z)"r'[KWnuz ‘(Wm “W;‘)—KWHQ '(Wr _WH)]

1 1
17 Kx =~ [ kr(x)dx , Ky =“AT;7'-[ kr(y)dy

Kx -Ax— Ky - Ay
Ax— Ay

(18] Kv=

What is the difference between determining that an error is tolerable and denying that it even
exists? Is it logical and legitimate to say that a "carefully designed grid system" eliminates an
error that one claims does not exist? Is it possible that carefuily accounting for all the errors is a
prerequisite for designing a grid system? And finally, if one scientist has a calculator, and
another can show that for even one case the calculator gives back 2.5 for 1+1, which scientist has
the responsibility to demonstrate the practical usefulness and validity of the calculator in all
cases?

Appendix: Numerical Examples - Parallel Modeis of a Relaxing Wet Pulse
Using the Arithmetic and Darcian Means (excerpts from a paper in
progress}

Now consider a numerical experiment for a long, vertical, homogeneous fracture described by
pressure-conductivity relation [9] and the pressure-saturation relation {19], using parameters, Ks
=0.00474 m/s, 1 = 6.4 (1/m), yd = 0.08 m, 85 = [, 6r = 0.0395 and = 0.64 (1/m). These

A
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conductivity parameters very crudely model an average fracture in Topopah Spring welded
volcanic tuff (Schenker, et al., 1995), with the saturation parameters chosen simply and arbitrarly
to keep count of mass balance. A fracture of depth, xI = 512 m, is modeled with a finite
difference form of the Richards' unsatirated flow equation [T'5], using the modified Picard
method (Celia, et al., 1990) with an adaptive time step (Baker, et al., 1998). In this case, just to
make x equal to depth, x will be positive downwards. The upper boundary will be a matric
suction (2.95823 m) such that kr = 10"*.  The lower boundary is no-flow and set up such that the
depth, xl, is constant no matter how many grid points, ¢ to np, in the model.

, where 6§ = volumetric water content

(18] 6-6, _{ 1 WSy,
6,-0, |exp(B-(yv,-¥) w>y,
(m*/m’, effectively dimensionless) Or = residual water content, 8s = saturated water

content, and [} and yd are fitting parameters

The initial condition of all the grid points in the model will be a matric suction such that kr =
1078, except for the points from 0.35*x1 to 0.45*xl, which shall be set to a positive pressure head
of 1 m (y =-1 m). The number of poeints, np, in model will be an even muttiple of 10, such as,
40, 60, 100, 140, 200, 280, 400, giving space steps of Ax = 12.8, 8.533, 5.12, 3.657, 2.56 1.829
and 1.28 m for xI = 512 m. {Note: The same etrors occur in smaller reaches, but the large-scale
plots make the dispersive nature of some oscillations more apparent. }

Because the mass inflow and outflow at the boundaries of this experiment will be orders of
magnitude smaller than the mass flow in the interior, the relative global mass balance, as defined
by Celia, et al., will not be used. Instead, each time step will be calculated to converge to an
error, rmb, in the equivalent depth of water of 10" m. The error, rmb = sumth - flx, where

il

Ax By ,
sumth = 5 Y (61 -8.,+8]" —6]) is the trapezoidal integral of the mass change in the
i=1

model during one time step, and flx = -Kim,»*(H1-H0)*At/Ax is the mass flow into the upper
boundary of the model in one time step. Kmy; is the intergrid hydraulic conductivity mean
between the x0 = 0 upper boundary and the first grid point at x| = Ax.

In this case, two models will be run in parallel for comparison. One uses the arithmetic mean,
Ka, for the intergrid conductivity mean, The other uses the Darcian mean in {14], Kv. The model
using the Darcian mean will be set to adjust the time steps so that it converges to rmb < 10" min
40 iterations or less. The model using the arithmetic mean will use exactly the same time steps,
but will be allowed to converge in 80 iterations or less. If the either model does not converge in
the alloted number of iterations, then the time step is reset and reduced, and both models are rerun
for that time step. If the Darcian mean model converges in less than 40 iterations, the time step is
increased slightly. The maximum time step is limited to 5( 10% 5. In this way, any difference
between the two models involving time step as well as space step discretization error is removed.
Both are equally affected.

Figure 2a shows the results for the arithmetic mean model fornp =40, Ax=12.8 m,att=0,
10, 0.512¢10%, 1.024¢10%, 2.048(10% and 4.096(10% s. Figure 2b shows the results in the same
run for the Darcian mean model. Note the different vertical scales, necessary due to radically
different responses. This is the model of an initial-condition pressure pulse that should be both
relaxing and drifting downwards in the fracture. In the first ten seconds, the arithmetic mean
model produces excess negative matric suction (positive pressure} heads that are nen-physical.

s
10
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The Darcian mean model, by contrast, relaxes completely to the just under saturation near a
matric suction of 0.08 m, with no apparent change in pulse shape.

JA

i\ ——
Ry ]
(5]

dal S

E" N s 4,096.000 §
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1350 200 250 00 %0 400 450
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Figure 2a: Arithmetic Mean Model
Initial pulse of y =-1 m between 0.35x] and 0.45x]1,
relaxing and translating with time, fornp=40 att
=0, 10, 0.512(10%, 1.024(10%), 2.048(10%) and
4.096(10%) 5, in the example fracture

E 2
g S m—— v
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Figure 2b: Darcian Mean Model
for np = 40 running in parailel with the same time
steps in the same fracture and the same output
times.

As the models progress, the arithmetic mean modet develops a persistent non-physical spike in
matric suction at the top edge of the pulse (left on graph). This is a direct result of viclation of
the min-max principle, as demonstrated in the three-point grid test in the questions above. The
arithmetic mean model also develops severe oscillations in the peak of the pulse, producing many
non-physical peaks that are consistent with the concept of mass clumping due to a differential
error in hydraulic conductivity between wet-over-dry and dry-over-wet conditions. By contrast,
the Darcian mean model is very smooth and well-behaved.
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Figure 3a: Arithmetic Mean Model
Convergence to the fine-grid solution, for np = 40,
100, 200 and 400, or Ax = 12.8, 5.12, 2.56 and 1.28
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Figure 3b: Darcian Mean Model
Convergence to the fine-grid solution, for np =40,
100, 200 and 400, or Ax = 12.8,5.12,2.56 and 1.28
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Figures 3a and b show the convergence of the arithmetic mean and Darcian mean medels for
np = 40, 100, 200 and 400, or Ax = 12.8, 5.12, 2.56 and 1.28 m, at t = 4.096(10")3. As step size
goes down, the trailing edge suction spike and the leading edge oscillations in the arithmetic
mean model decrease. Both models converge to the same fine-grid solution, but the Darcian
mean model shows superior error and stability characteristics.

Non-Darcian flow errors are not apparent in this example for vertical space step sizes below
where the arithmetic mean actually violates the min-max principle. But in another example
(Baker, 1995b), of infiltration into a fracture to less then 1 cm, with space steps from 1.5 mm to
21 pm, and an adaptive grid set to maintain a constant ratio between adjacent grid conductivities,
using the arithmetic mean produced errors in the wetting front position of up to 18.75%,
cornpared to 0.36% for an approximate Darcian mean. It may be that non-Darcian flow etrors are
tolerable in many cases, but this cannot be certified unless they are actually accounted.

The oscitlations in the leading edge of the pulse in the arithmetic mean model are reminiscent
of numerical dispersion in hyperbolic systems. But classical numerical dispersion is created by
the differing speeds of propagation of different frequency components of the pulse. Here the
differing speeds of propagation are generated directly by errors in the intergrid conductivity
mean, and depend as well on the slope of the pulse. This kind of oscillation has been seen
previously in fracture flow infiltration using a van-Genuchten-style conductivity relation in
Baker, et al. (1999a).

Figure 4 shows how the matric suction spike evolves as a function of time and model vertical
space step size, Ax. The trend, out to 83,886,100 s in model time, is for the non-physical spike to
increase logarithmically in time, once it starts to develop. The plot for np =40, Ax = 12.8 m, is
atypical, possibly because of increasing space step discretization error. Note that the plots for
1.829 and 2.56 m start to decrease before rising above the initial conditions behind the pulse. The
reasons for delayed onset and the apparent logarithmic increase of the dry spike are not fully
understood at this time.
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Figure 4: Trailing Edge Matric Suction Spike
for arithmetic mean model for np = 40, 60, 100, 140, 200, 280 and
400, Ax = 12.8 to 1.28m; The grid point with the largest spike value at
t=8.39(10% s is tracked from t = 10 to 8.39(10%) s.

Although it does not show well, note that even for np = 400, Ax = 1.28 m, the grid point at the
trailing edge of the initial pulse rises from the initial condition of 2.95823 m to 2.99623 m at the
end of the run. There is no physical reason for it to do so; the gravity flow into the fracture is the
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same as in the fracture to the top edge of the relaxing pulse. If the pulse were diffusing upwards,
the trend would be in the opposite direction. If the pulse had reached the no-flow lower boundary
and the fracture were filling with water, due to the upper boundary inflow of 4.74(107"°) m/s, the
trend would be in the opposite direction. The model end timé is about 2.63 years, and the non-
physical spike for the Ax = 1.28 m case is just beginning to show. This does not bode well for
models that use the arithmetic mean, or any other significantly non-Darcian mean in violation of
the min-max principle, to predict flow over scales of thousands of years.
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